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Introduction

The problem
The objective function is expensive to compute when it is, for example, the lift-to-drag ratio of an
aircraft wing using a computational fluid dynamics (CFD) solver, or nonlinear deformation of
composite structure using a finite element (FE) solver. The objective function is impossible to
compute when it is, for example, data obtained from experiments.

The optimization problem is written formally as,

where  is the vector of design variables,  and  are the aggregated equality and inequality
constraint functions, respectively. The state variables  are those implicitly involved in the
evaluation of the objective and constraint functions. Examples of  are the flow variables in a CFD
solver or the displacement field in the structural FE solver.

In above cases, in order to solve the optimization problem during a practical time period, the
number of evaluation of the objective function has to be limited in the optimization algorithm. There
are two limitations on the optimization algorithm:

The design space cannot be explored by carrying out numerous direct evaluation of the
objective function;
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The derivative of the objective function w.r.t. design variables cannot be computed using the
finite difference approach.

These limitations prevent the direct application of any gradient-free or gradient-based algorithms to
the optimization problem.

Surrogate-based optimization
To overcome the limitations, one approach is to use surrogate-based optimization (SBO). The SBO
algorithms typically contain two key ingredients, a surrogate model and an acquisition function.
The surrogate model is employed to approximate the expensive objective function. Since the
surrogate is computationally efficient, it allows for fast evaluation of approximated objective
function as well as its derivative w.r.t. the design variables. The acquisition function is a criterion for
selecting the points in the design space that is potentially a solution to the optimization problem.
The acquisition function is designed to take into account of both exploration, i.e. sampling from
areas of high uncertainty, and exploitation, i.e. sampling from areas likely to contain the minimizer
of the objective function.

The general procedure of SBO is as follows,

1. [Initialize dataset] Generate a sample data set  by evaluating the
objective and constraint functions  at a few sample points  in the design space.

2. [Initialize surrogate] Generate surrogates , ,  using the sample data set 
.

3. [Inner Optimization] Find the design point  by solving an optimization problem that
consists of the surrogates and an acquisition function .

4. [Acquire new data] Evaluate the objective and constraint functions  at the new
design point .

5. [Update surrogate] Update the surrogate using the sample data set augmented with the new
design point .

6. [Loop] Repeat steps 3-5 until the convergence or stopping conditions are reached.

One category of SBO is the one-shot approach, which only contains steps 1-4. In the one-shot
approach, the acquisition function is the surrogate itself. The issue is that the initial sample set
does not necessarily represent well the distribution of the objective function over the whole design
space. As a result, the optimal solution found by the algorithm may be far off from the true value of
objective function. The other category of SBO is the updating approach that, of course, contains all
the six steps. This is the category where the Bayesian optimization lies.
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Bayesian optimization (BO) is essentially the six-step SBO procedure with a statistical
interpretation. Adapted from wikipedia (https://en.wikipedia.org/wiki/Bayesian_optimization): The
expensive function is treated as a random function with a prior distribution, which captures the
beliefs about the behavior of the function. The prior distribution is updated using the data set to
form the the posterior distribution over the objective function. The posterior distribution is used to
construct an acquisition function that determines the next design point.

The two precursors of BO are Kushner1964
(http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1431594) and
Mockus1975 (https://link.springer.com/chapter/10.1007%2F978-3-662-38527-2_55). A good
review of BO is provided in Brochu2010 (https://arxiv.org/abs/1012.2599). The Gaussian process
regression (GPR) model is a popular choice for the surrogate model in BO. Some outstanding the
GPR-based BO algorithms include, but not limited to,

1. BayesOpt: code (https://github.com/rmcantin/bayesopt), doc
(https://rmcantin.bitbucket.io/html/), paper (https://arxiv.org/abs/1405.7430).

2. HIPS/spearmint: code (https://github.com/HIPS/Spearmint).
3. GPyOpt: code (https://github.com/SheffieldML/GPyOpt), doc

(http://sheffieldml.github.io/GPyOpt/)
4. GPflowOpt: code (https://github.com/GPflow/GPflowOpt), doc

(https://gpflowopt.readthedocs.io/en/latest/), paper (https://arxiv.org/abs/1711.03845)

Besides GPR, there are BO algorithms using other surrogate models, such as those in SMAC (code
(http://www.cs.ubc.ca/labs/beta/Projects/SMAC/), paper
(https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf)). A list of implementations of BO is
provided here (https://rmcantin.bitbucket.io/html/relsoft.html). Finally, note that in the engineering
community, the BO algorithm tends to appear by the name efficient global optimization (EGO)
algorithm Jones1998 (https://link.springer.com/article/10.1023/A:1008306431147), Sasena2002
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.4697&rep=rep1&type=pdf).

Next, the key components of BO, the surrogate model and the acquisition function, as well as the
treatment of constraints will be discussed.

Surrogate model
In this and the following sections, the discussion will be based on the GPR model. The prediction
of the GPR model at a new design point  follows a Gaussian probability distribution,

where  is the predicted value of objective function and  is the variance, i.e. the uncertainty of
the prediction. The details of GPR models have been discussed in the previous articles and will be
skipped.

Acquisition function for unconstrained optimization
The BO is initially developed for unconstrained problems. Surveys of acquisition functions for such
problems can be found in, for example, [Sasena2002] and Gelbart2015
(https://dash.harvard.edu/handle/1/17467236). There are three basic acquisition functions: (1)
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Probability Improvement (PI) [Kushner1964], (2) Expected Improvement (EI) Mockus1994
(https://link.springer.com/article/10.1007/BF01099263), Lizotte2008
(http://www.csd.uwo.ca/~dlizotte/publications/lizotte_phd_thesis.pdf), (3) Lower Confidence Bound
(LCB) Cox1992 (https://ieeexplore.ieee.org/document/271617/). Besides the basic ones, there are
acquisition functions based on Thompson Sampling and the information theory (entropy). In
general, the acquisition functions are evolving towards (1) finding multiple candidate points in one
iteration, (2) taking advantage of parallel computing via techniques like asynchronization.
Nonetheless, this article will focus only on the three basic acquisition functions.

PI
Defined as the probability of the new design point  to offer a better value of the objective
function  than the minimum objective function in the sample data set .

EI
Defined as the expectation of the improvement in the objective function at the new design point. In
the literature, EI has been generalized to include user-specified parameters that control the
exploitation-exploration trade-off. The generalized EI is written as,

where  and  are the user-specified parameters. The classical form of EI is obtained with
 and . A larger  or  will put more weight on the exploration. Note that when 

and , EI reduces to PI. For a GPR model, the closed-form expression is available for .
For the case ,

where , and  and  are the cummulative distribution and probability density
functions, respectively.

LCB
Defined using the LCB concept,

where the probability of  is a constant controlled by the user-specified parameter 
. A larger  will put more weight on the exploration. The gradient of  w.r.t.  is straight-

forward.
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Discussion
The PI acquisition function is purely exploitation, which is undesirable for global optimization. The
EI and LCB acquisition functions are high when  approaches the optimum point, or the
uncertainty of  is high. Therefore, both  and  achieve a balance between exploitation
and exploration.
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The exploitation-exploration trade-off of EI and LCB functions can be further tuned by the cooling
scheme. In the cooling scheme, the optimization starts with a large user-specified parameter for
more exploration and gradually decreases the parameter to focus on exploitation. However, the
effect of this scheme is controversial [Sasena2002] and [Brochu2010].

Treatment of constraints
The acquisition functions discussed in the previous section work well with optimization problems
without constraints or with box constraints only. For more complex constraints, there are two types
of treatments. The first type is the direct approach. As suggested in [Sasena2002], the objective
and constraint functions are replaced with the surrogates, and the following problem is solved,

Similar to [Sasena2002] is the expected violation (EV) method Audet2000
(https://arc.aiaa.org/doi/pdf/10.2514/6.2000-4891): The optimization is carried out by filling the
design space using latin hypercube sampling and filtering out infeasible candidate points using the
so-called EV function, which takes the same form of EI. Essentially, the constraint surrogates 
are replaced by .

The other type is the indirect approach, which is further divided into two categories, as discussed
in [Gelbart2015]. In the first category, the constrained problem is converted to an unconstrained
one using classical (non-BO) methods. Three representative approaches are,

1. Barrier methods: The iterates are prevented from leaving the feasible region by augmenting the
objective function with a barrier function, which causes the objective to grow to infinity at the
boundary of the feasible region.

2. Penalty methods: The objective function is augmented with a penalty term, which still allows
the iterates to leave the feasible region but the iterates become feasible as the penalty
increases to infinity in the process of optimization.

3. Augmented Lagrangian methods: The problem is solved via the Lagrangian form augmented
with the extra term in penalty methods, while the Lagrangian multipliers are controlled by the
penalty parameters.

In the second category of indirect approach, the acquisition function is modified to incorporate the
constraint surrogates. two representative approaches are,

1. Modified EI methods: An example is the EI with constraints (EIC) Schonlau1998
(https://www.jstor.org/stable/4356058). The EI for the objective function is augmented to take
account of the constraints. In EIC, the EI is multiplied by the probability that the constraints are
satisfied, so that the improvement (almost) only occurs at feasible candidate points.

2. Marginalization integral (MI) methods: Examples are integrated expected conditional
improvement Gramacy2011
(https://www.researchgate.net/publication/45913547_Optimization_Under_Unknown_Constraints
and expected volume minimization Picheny2014
(http://proceedings.mlr.press/v33/picheny14.pdf). The acqusition function at  is defined using
an integral over the whole design space,
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where  is a measure of improvement at  given observation at  and  is the
probability that the constraints are satisfied at . The maximizer of  provides the best
overall improvement in the design space. The inclusion of  encourages picking candidate
points likely to be feasible, while still permits the picking of points in infeasible region that may
provide improvement over the whole design space.

In terms of programming, the direct approach is probably the easiest one to implement.
Particularly, the non-BO indirect approaches may be applied to solve the subproblems derived
from the the direct approach, if standard packages for numerical optimization are employed. The
challenge in the MI methods is the integration over the design space, which could be intractable in
higher dimensions.
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Inner optimization step
With the surrogates and the acquisition function ready, one then proceeds to the inner optimization
step.

Choice of algorithm
No matter which algorithm is used, eventually the BO process boils down to a series of non-
convex optimization subproblems. It is hard to find the global optimum of a non-convex function.
One choice is to use the evolutionary algorithms, or some so-called global algorithms like the
DIRECT, which are claimed to be able to find the global optimum given sufficiently many iterations.
Another choice is to apply the algorithms for convex optimization, especially the gradient-based
ones, with multiple restarts.

Sometimes the latter is preferred. Both choices do not guarantee the convergence to global
optimum. The convergence rate of the former is much slower than the latter, especially in high-
dimensional space. In practice, multiple restarts usually result in a good global sub-optimal point
that is sufficient for the engineering purposes. A merit of the former, though, is that some
algorithms can handle disjoint feasible regions.

Gradients
If a gradient-based algorithm is employed in the inner optimization step, it is necessary to compute
the gradients of the surrogate and the acquisition function analytically (or using automatic
differentiation), instead of using finite difference. The latter could destabilize the iterations of
gradient descent near some "singularity" points at which the GP model is ill-defined.

For example, the gradient of  w.r.t.  for  is,

where one needs to know  and .
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Note that, in the trivial treatment of the multiple output case, the process variances  of the
output are determined independently. Therefore, it is sufficient to consider the single output case.
The mean and variance at a single point are, respectively,

where  and  and

The gradient of the mean is computed in a straight-forward manner,

where  and  are obtained from the regression and mean functions, respectively.

The computation of the gradient of the variance is a little bit more involved,

where . The computation is organized so as to minimize the number of linear solves of
the triangular matrices.
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Update surrogate step

Relearn rate of the surrogate
The training of the surrogates could become expensive as the number of samples increases. Also,
contrary to intuition, updating the hyperparameters of the surrogate at every iteration may be
unnecessary or even counterproductive Bull2011 (http://www.jmlr.org/papers/v12/bull11a.html). A
better strategy is to introduce a relearn rate: Update the sample data set in the surrogate every
iteration, but update the hyperparameters every few iterations.

In practice, the effectiveness of this strategy depends on the quality of the surrogate
implementation. If the current hyperparameters are far off from the converged values, keeping the
current hyperparameters would reduce the convergence rate of the whole BO algorithm.

Updating scheme for GPR
Formal, we set up the problem like this: Consider a scenario where a GP model is trained using a
large sample data set (  points), and now suppose a few new samples (  points, ) are
to be appended to the data set. The question is, if the existing hyperparameters are kept, how to
recomputing the coefficient matrices in GPR, including , ,  and , efficiently.
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Strictly speaking, the addition of new samples will result in the recomputation of everything, even
though the hyperparameters remain the same: The std and mean of the samples are modified, so is
the correlation matrix , and so are the follow-up matrix decompositions. However, now that 

, one can assume that the std and mean of the new sample data set are the same as
those of the old one. As a result, the portion of  associated with the old sample data set remains
the same, and the new coefficient matrices can be computed via partial matrix decompositions,
which could save considerable amount of time - dropping from  to .

The new covariance matrix is

where  is the matrix associated with the old data set, whose Cholesky factor  is known.
Matrices  and  are due to the new samples. The Cholesky factor  of  is obtained
via the following procedure of partial Cholesky decomposition,

1. Cholesky decomposition: .
2. Linear solve: 
3. Assemble the Cholesky factor,

Next, the new  matrix is

where block matrix inversion (https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion) is
used and  is known from the old model.

Finally, since  is known, one can utilize the QR update algorithm
(http://www.ams.org/journals/mcom/1976-30-136/S0025-5718-1976-0431641-8/) to obtain the QR
decomposition of . Such algorithm has been implemented in standard packages for scientific
computation, such as scipy.linalg.qr_insert
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html).

With the new coefficient matices , ,  and , the GP model is updated with the new sample
data set.
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Final note
To be fair, it is worth mentioning the existence of adjoint-based optimization. This methodology
applies to optimization problems constrained by partial differential equations (PDEs). One can
incorporate the adjoint capability in their PDE solver and enable the direct gradient calculation of
the expensive objective and constraint functions. This approach applies to optimization problems
involving CFD and FE solvers. The adjoint method would be a different (but interesting) story that
will be discussed in the next module.

https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion
http://www.ams.org/journals/mcom/1976-30-136/S0025-5718-1976-0431641-8/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html



